Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle
نویسندگان
چکیده
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force.
منابع مشابه
A Passively Stable Hovering Flapping Micro-Air Vehicle
Many insects and some birds can hover in place using flapping wing motion. Although this ability is key to making small scale aircraft, hovering flapping behavior has been difficult to reproduce artificially due to the challenging stability, power, and aeroelastic phenomena involved. A number of ornithopters have been demonstrated, some even as toys, nearly all of these designs, however, cannot...
متن کاملA Search for Optimal Wing Strokes in Flapping Flight: Can Engineers Improve Upon Nature?
Computational modeling is used to explore the efficiency of hovering flight in a hawkmoth (Manduca Sexta). While flying insects such as hawkmoths are excellent flyers, their wing-strokes are constrained by a number of factors including anatomy, developmental requirements, biological material properties and evolutionary history. Engineered micro-aerial vehicles are not subject to similar constra...
متن کاملA computational fluid dynamics of 'clap and fling' in the smallest insects.
In this paper, we have used the immersed boundary method to solve the two-dimensional Navier-Stokes equations for two immersed wings performing an idealized 'clap and fling' stroke and a 'fling' half-stroke. We calculated lift coefficients as functions of time per wing for a range of Reynolds numbers (Re) between 8 and 128. We also calculated the instantaneous streamlines around each wing throu...
متن کامل"Clicking" compliant mechanism for flapping-wing micro aerial vehicle
This paper presented a click mechanism, which is inspired by a Dipteran insect, for use in flapping-wing micro aerial vehicle. The clicking mechanism is integrated in a thorax-like compliant mechanism, which buckles and consequently produces a large wing stroke when driven by an electric motor. The thorax-like compliant mechanism can store elastic energy in flexible hinges and is good for stori...
متن کاملThe aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
Flying insects may enhance their flight force production by contralateral wing interaction during dorsal stroke reversal ('clap-and-fling'). In this study, we explored the forces and moments due to clap-and-fling at various wing tip trajectories, employing a dynamically scaled electromechanical flapping device. The 17 tested bio-inspired kinematic patterns were identical in stroke amplitude, st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2016